
Complex Dynamical Systems Theory

This article was written by Professor Alicia Juarrero, author of Dynamics in action: 
intentional behavior as a complex system.

Complex Dynamical Systems Theory
Complexity is a systemic property. Adaptive evolving systems like ethnic cliques or 
complex social situations such as “knife crimes” are best understood as dynamic 
networks of interactions and relationships, not mere aggregates of static entities 
that can by analyzed by separately identifying and enumerating them. By definition, 
relata do not exist in individual particles, only in their inter-relationships. In short, 
dynamic relations, not isolated agents, constitute the basis from which complex 
dynamical systems theory takes its start. Thus, instead of attempting to construct 
the identity and dynamics of a self-organizing network from the bottom up by 
identifying separate individuals and only afterwards grouping them into what the 
investigator hopes is the appropriate aggregate, complex systems theory proceeds 
by letting the dynamic patterns produced by the flows and processes involved 
identify the specific architecture in question. Because complex systems are 
differentiated into interlinked levels of organization – with no preferred level of 
granularity - the appropriate coarseness on which to ground a model is determined 
by the functional task of interest. 

Whether in the physical or social realms, if individuals are independent or even 
weakly interdependent no complex physical or social structure will emerge; 
connectivity and interaction are necessary conditions for the emergence of 
complexity. No closed system can spontaneously become differentiated and show 
complex organization, form or structure. Stated differently, complexity is the order 
that results from the interaction among multiple agents; while particles remain 
separate from each other, no increase in their number will ever produce organization 
(Brooks and Wiley 1988). In contrast to collections of isolated elements that generate 
Gaussian (normal) distributions that can be understood and modeled in the 
traditional manner, a complex system is identified by the signature “relations among 
components, whether static or dynamic, that constitute a composite unity as a unity 
of a particular kind” (Maturana 1980). The rich interactions between real complex 
adaptive systems and their environment also mean that because a given domain “is 
connected to other domains in various ways, the effects of those changes might 
propagate through the system and out into other domains in the world, inducing 
changes of various degrees on all scales… . Those effects might eventually travel 
back and lead to the disappearance of the original domain or transform its 
dynamics” (Chu et al. 2003). 

Therefore only complex dynamical systems theory and its related disciplines and 
tools - network theory, agent-based modeling - provide the appropriate prism 
through which interdependent systems such as social groups can be understood, 
and coherent, integrated policy recommended.
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Boundaries
A complex dynamical system’s internal structure consists in the patterns that result 
from particular objects and the interactions among them. But unlike those systems 
characterized by linear processes that can be effectively isolated from environmental 
influence, the external structure or boundary conditions of complex systems are as 
much as part of the complex system as the internal structure; the interactions 
between the components and the environment, that is, “the set of all [interactions 
not components of the system] that act or are acted on by components of [the 
system]” (Bunge 1979) provides the system with a causally effective external 
structure. Although the environment of interest is thus not the total environment but 
the environment that affects and is affected by the thing in question,  the feedback 
provides complex systems with a contextual embeddedness that makes the 
boundaries of complex systems typically fuzzy and difficult to demarcate. 

From a complexity science point of view, therefore, ethnic cliques and situations 
such as “knife crime”, understood as dynamic “structures of process,” are not 
bounded by physical or geographic boundaries. In the case of ethnicity, for example, 
the dynamic structure of a group no doubt extends spatially into both the group’s 
diaspora a well as the local communities; insofar as ancient traditions, rites and 
rituals continue to inform and influence present practices, the dynamical system we 
identify as an ethnic group also extends back in time to pre-diaspora and tribal 
culture.

The Causality of Complex Systems
This deep contextual embeddedness of complex systems presents additional 
difficulties for researchers: feedback and interactions to/from embedding domains 
can spread causally (not as efficient causes but as context-sensitive constraints), 
thereby expanding the domain of the system in question and propagating 
unforeseen side-effects uncontrollably (Chu et al.). Due to the interactions that 
constitute them, complex adaptive systems show not only nonlinear effects, but also 
what is often called causal spread (Wheeler and Clark 1999), a form of causality 
different from that of the more commonly understood efficient causality. 

The connectivity and interaction required for complex systems to self-organize, and 
which provides them with their contextuality and causal efficacy, are best understood 
in terms of context-sensitive constraints (Juarrero 1999) not classical billiard-ball-
like (efficient) causality. First order, context-dependent constraints such as nonlinear 
interactions like positive feedback loops and catalysts make individuals or particles 
strongly interdependent by altering their marginal probability. Feedback relations 
with the environment recalibrate the internal dynamics of complex systems to 
incoming signals. Doing so embeds the system in its contextual setting by effectively 
importing the environment into the system’s very dynamical structure. Positive 
feedback is a temporal context-dependent constraint insofar as it incorporates the 
past into a system’s present structure. Because the presence of a catalyst changes 
the probability of a reaction’s occurrence, catalysts also function as contextual 
constraints insofar as they incorporate the environment into a system’s present 
structure. Thus individuals or organizations who play the role of social catalysts and 
serve as media for feedback loops are physical embodiments of bottom-up 
constraints that link other individuals and organizations together and embed –tightly 
link—their dynamic organization to its environment and its history such that the 
newly formed global structure is no longer independent of either. 
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By embodying context-sensitive dependencies, feedback and catalysts are bottom-
up constraints that render a system constrained by its own past experience and its 
environment. Complex dynamical systems thus embody the initial conditions under 
which they were created; their origin and trajectory constrains their future 
development and evolution. Because such exquisite sensitivity to initial conditions is 
one of the hallmarks of complex adaptive systems, these dynamical processes are 
also essentially historical; in Prigogine’s words, “they carry their history on their 
backs,” that is, their internal structure reflects their history. Accordingly, self-
organizing networks are “path-dependent.” Any methodology that purports to 
understand a given complex system while at the same time ignoring or not fully 
understanding either its trajectory or the overall context in which it is embedded is 
bound to fail. The effects of context-dependent constraints, therefore, are described 
by conditional, not marginal, probabilities. They are, in other words, functional 
constraints.

Once closure of first-order context sensitive constraints occurs, the resulting global 
dynamics presents characteristics that aggregates or sums of individuals do not; in 
technical terms, context-sensitive constraints are enabling constraints insofar as 
they precipitate the emergence of a global dynamics with an expanded phase space. 
The dynamic whole has greater degrees of freedom than its components individually 
– a narrative can tell you more than a Q&A form can. Self-organizing networks 
described in stories are thus multi-level dynamical systems with emergent properties 
that are irreducible to their component particles. These characteristics will be 
ignored and missed if the analytic focus is limited solely to compartmentalized 
components studied in isolation from each other. 

Qua emergent wholes, complex systems function as the boundary conditions that 
actively influence the behavior of their components. Insofar as individuals – children 
or adults - envision themselves as caught up in a particular narrative structure, we 
will be able to foresee their constrained behavior. Top down, narratives act as 
limiting constraints that restrict the degrees of freedom of their components. 
Whereas from a traditional mechanistic, atomistic point of view such influence was 
impossible, complex dynamical systems theory allows us to understand such 
interlevel causal relationships – ubiquitous in social systems - in a scientifically 
respectable way. In complex adaptive systems, interactions among individuals weave 
together a story; and once a narrative coalesces in the minds of an individual, or a 
culture  in turn, and as a global system, it actively influences the behavior of the 
components that make it up. Only complexity science theory provides the tools to 
understand this kind of bottom-up and top-down causation typical of the collective 
behavior of human organizations. When combined with narratives as Cognitive-
Edge’s SenseMaker® allows, policy makers acquire an indispensible tool with which 
to map current social patterns and anticipate future trends. Without an appreciation 
of such global dynamics it is impossible to fully understand the inter-level 
organizational dynamics of social groups: interacting individuals create stories which 
then loop back down and alter the behavior of the very individuals that constitute 
them.

Power Laws
The relationship between (on the one hand) the context-sensitive constraints that 
make complex self organization possible, and the power laws that describe such 
systems on the other has become clearer thanks to the research of e.g. Barabasi 
(2002, 2003). Since many complex systems give evidence of the same dynamics at 
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work on multiple levels of organization (i.e., they tend to be self-similar across 
levels), scalability is often a central element of complexity science. Through 
children’s narratives it is therefore possible to capture the dynamics of an overall 
ethnic or social group. Because power laws are frequently “indicative of correlated, 
cooperative phenomena between groups of interacting agents” (Cook et al. 2004), 
students of complex human systems recognize that in lieu of Gaussian statistics, 
linear regression models, normal distributions, etc., they must model their subject 
matter using the more unfamiliar tools of organizational dynamics, including Pareto 
distributions, fractal geometries, and the like. Since extreme cases and situations are 
much more important than average cases and situations to most students of the 
human sciences, managers, policy makers, analysts and social scientists ignore 
power laws (which show fat or long tails, infinite variance, unstable confidence 
intervals, etc.) at their own peril. 

Game Theory
Applying game theory to human complex systems, exploring rational choice 
strategies over time, and investigating the basis of social cooperation, are just a few 
examples of the increasing pervasiveness of the complexity approach. In each case, 
the situation is treated as an evolving dynamical system with global properties that 
emerge from the local interactions among the participants, and between the 
participants and the context in which they are embedded. Such simulation modeling 
can capture otherwise intractable nonlinear effects and thereby reveal global 
patterns that would have been previously out of reach.

Once the usefulness of simulation models became clear, the Asian Development 
Bank, for example, dropped its opposition to a centuries-old management practice 
when Lansing’s computer model of the complex Balinese irrigation system showed 
the functional role of traditional water temples bore a “close resemblance to 
computer simulations of optimal solutions” (Lansing 2000).

Attractors
Attractors are typical patterns of dynamical, interdependent behaviors of limited 
dimensionality and carved out from a much larger space of possible patterns and 
dimensions. These global structural patterns, which emerge from interactions among 
the system’s components through phase space, can be characterized as emergent 
collectives. Social networks can be characterized and studied as attractors.

Ergodic behavior patterns describe what are called a system’s attractors. Only two 
attractors were thought to exist: (1) The dynamics of a grandfather clock’s pendulum 
describe a point attractor that draws the bob to a single point in phase space 
regardless of its original position. Equilibrium models assume that all systems they 
describe are of this sort; traditional economic models were equilibrium models. Not 
all processes can be understood as near-equilibrium and drawn into a point 
attractor; ecological research revealed that predator-prey relationships described a 
different type of attractor, (2) a periodic attractor. Unlike phenomena characterized 
by point attractors, predator-prey distribution, for example, typically repeat 
regularly in a continuous, periodic loop. It was not until the last quarter of the 
twentieth century that a third type of attractor, so-called strange, chaotic or complex 
attractors, were discovered: patterns of behavior so convoluted that it is difficult to 
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discern any order at all; complex human systems can often be characterized as 
complex attractors, of which social networks are one example. 

Complex attractors surprised scientists when they discovered that far from being 
chaotic in the old sense of the word, these complex systems are characterized by a 
high-dimensional degree of order. Never exactly repeating, the trajectories they 
trace nevertheless stay within certain bounds. Far from being chaotic in the old 
sense of the term, these complex behavior patterns provide evidence of highly 
complex, context-dependent dynamic forms of organization.

Attractor Landscapes
In the 1930s biologist Sewall Wright (1932) developed a model of fitness landscapes 
intended to capture the processes natural selection by visualizing the “switch and 
trigger mechanisms” that precipitate a change in a system’s evolutionary trajectory. 
More recently, thanks to the development of computer simulation models, the 
dependencies and constraints embodied by attractors can also be visualized as three 
dimensional adaptive landscapes depicting a series of changes in a system’s relative 
stability and instability over time. The increased probability that a system will occupy 
a particular state can be represented visually as a landscape’s wells, dips or valleys 
that embody attractor states and behaviors; the deeper the valley the greater the 
propensity of its being visited and the stronger the entrainment its attractor 
represents. In contrast sharp peaks are saddle points representing states and 
behaviors from which the system shies away. These landscape features capture the 
impact of context-sensitive constraints over time.  The set of all states that end up 
in a particular attractor constitutes the attractor basin; different basins are separated 
from each other by basin boundaries or separatrices. A system’s identity at a 
particular point in time captures the signature probability distribution of its 
dynamics – its unique adaptive landscape, so to speak. The most useful image of 
complex systems is its phase space portrait: its state space carved up into basins of 
attraction and changing over time.  

Since all social phenomena are complex systems it becomes extremely important for 
makers of social policy to be able to map these convoluted relationships as 
accurately as possible. Doing so allows policy makers to map a situation’s relative 
volatility, as well as to explore which changes to which parameters will make the 
situation more or less stable. Complex dynamical mapping of this sort thus provides 
an invaluable visual aid in phase shift prediction. Although by their very nature 
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complex systems resist precise predictability, 
dynamical landscapes and the mathematical 
software that create these visual aids also 
show decision-makers the range of “adjacent 
possible” successor states an unstable 
situation is likely to tip into. 

Dynamic landscapes depicting a series of 
changes of relative stability and instability 
over time provide a very useful way of 
visualizing the contextual and historical 
constraints embodied in the convoluted 
behavior patterns described by strange 
attractors. By tweaking the various parameters 
and filters that produce the landscapes, 
dynamical mapping with SenseMaker® 
software can provide decision-makers, for 
example, with evidence of  the presence of “a 
stable pattern overall, except for those groups 
that rank high on the combination of two scales, “retributive justice” and “anger.” 
These dynamical landscapes also provide evidence of probable and improbable 
“successor states” to a given situation, information that can be invaluable, for 
example, for designing a particular governmental advertisement campaigns on crime 
prevention etc. Dynamical mapping can prove that the intended network is possible, 
that it can be built; it can also providing guidance on the most appropriate criteria 
with which to design the most effective network – or disrupt a noxious one. For 
example, one city’s current landscape might show that it is possible to build a 
particular network that assists community leaders in precipitating a particular 
desirable phase change with respect to criminal activity– or, conversely, it can 
provide decision makers with information that aids and enhances the status quo. 
Because complex dynamical systems are uniquely individuated, dynamical systems 
mapping can also provide decision makers with information about whether or not 
the same advertisement campaign will be as effective in a different city, or a different 
country.

If a system could access every alternative with the same frequency as every other – 
that is, randomly – its landscape would be smooth and flat, portraying an object or a 
situation with no propensities or dispositions, that is, with no attractors. In contrast, 
the increased probability that a real system will occupy a particular state can be 
represented as wells – dips or valleys in a landscape – that embody attractor states 
and behaviors that the system is more likely to occupy. The deeper the valley the 
greater the propensity of being visited and the stronger the entrainment of its 
attractor. Dynamic landscapes thus provide governmental leaders with information 
about how entrenched a set of attitudes or behavior patterns are, and how best to go 
about preserving or changing them.

Topologically, ridges separating basins of attraction are called separatrices or 
repellers. Sharp peaks are saddle points representing states and behaviors from 
which the system shies away and in all likelihood will not access; the probability of 
their occurrence is low or nonexistent. But if a decision-maker discovers that a 
system is perched on a saddle point, he can rest assured that it won’t remain in that 
condition very long.  The height of the saddle point separating one attractor from 
another thus also represents the unlikelihood that the system will switch to another 
attractor given its history, current dynamics, and the environment. Landscape valleys 
thus provide decision-makers with a very good indication of whether or not a system 
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is locked-in to that particular condition, and what the likely “adjacent possibles” 
might be. The steeper the attractor’s separatrix walls, the greater the improbability 
of the system’s making the transition. On the other hand, the deeper the valley, the 
stronger the attractor’s pull, and so the stronger the perturbation that would be 
needed to dislodge the system from that behavior pattern. Similarly, the broader the 
floor of a valley the greater the variability in states and behaviors that the attractor 
allows under its control; conversely, the narrower the valley the more specific the 
attractor, that is, the fewer the states and behaviors it countenances.

Complex systems theory tells us that a landscape’s valleys and peaks are neither 
static givens nor external control mechanisms through which we can force change. 
They are not determinants operating as Newtonian forces. Instead they represent 
constrained pathways that have been constructed and continue to be modified as a 
result of persistent interactions between the dynamical system and its environment. 
Landscapes that incorporate dynamics also provide decision makers with information 
about the likely direction of change, and of the critical parameters that can influence 
the direction of that change.

Co-evolution
Predator-prey relationships taught us that the dynamical landscape of a complex 
system, to continue with the topographical metaphor, is not fixed. A predator will 
evolve better eyesight to see its prey, but the prey will evolve a disguise, negating 
the eyesight advantage. Thus “the landscape peak the predator attempted to climb 
has moved from under its feet, the fitness peak has shifted, the landscape has 
deformed due to the changes in the prey. This “coevolution” means that the fitness 
landscape seen by one creature is a dynamic, ever changing map dependent upon 
the actions of everything else in its surroundings. This is true for occupants of an 
ecosystem or a social group. It is a highly non-linear, closely coupled system - 
attractors that vary in both shape and position over time” (Lucas). Co-evolution with 
their natural and social environment is even more so of human systems than it is of 
animals. In the case of human beings we are always referring, therefore, to complex 
adaptive systems.    

In other words, since fitness is a relative term (relative to an environmental niche), 
changes in a (natural, social) niche alter the fitness of the individuals and species 
within it; in turn, changes in the relative distribution of types of individuals and 
species within a niche will alter the characteristics of the niche. Thus complex 
adaptive systems are best characterized as adapting and co-evolving with their 
environment. 

Stability versus Resilience: The Importance of Micro-
diversity
Complex dynamical systems theory explains the difference between stability and 
resilience. A stable system fluctuates minimally outside its stable attractor, to which 
it quickly returns when perturbed. Stable systems are typically brittle; they 
disintegrate if highly stressed. Resilient systems, on the other hand, might fluctuate 
wildly but have the capacity to modify their structure so as to adapt and evolve. 
Resilient, robust systems are also called meta-stable. Co-evolution selects for 
resilience, not stability.
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Complex adaptive systems are typically resilient. And notoriously robust to random 
perturbations – but exquisitely vulnerable to targeted interventions, as we will see 
below.

Understanding what causes resilience or robustness is a central issue for analysts 
and policy makers.  For purposes of Cultural Mapping it is particularly important to 
understand which specific features of the dynamical relationships that make up the 
knife crime statistics in the city of XYZ make the situation robust or resilient; it is 
important, that is, to identify the system’s dynamics that allow likely participants to 
adapt in response to either their own dynamics or perturbations from the outside, 
and thereby to evolve and persist as a network, despite the removal or incarceration 
of many of their members. This understanding also points to avenues for 
intervention by the appropriate authorities. Although still a young science, complex 
adaptive systems theory has begun to make inroads into understanding (1) the 
conditions that allow these structures evolve over time in response both to their own 
internal dynamics and in interaction with the environment; (2) the conditions that 
facilitate robustness and resilience; and (3)  the most effective points of intervention.

Jackson & Watts (2002) note that in a network context, path resistance or network 
resilience is equivalent to “how many errors or mutations are needed to get from 
some given network to an improving path leading to another network.”  Peter Allen 
defines microdiversity more broadly than simply errors or mutations, as “a measure 
of the number of qualitatively different types of entity present corresponding to 
individuals with different attributes.” (Garnsey & McGlade 2006, 23).  Chu et al. 
(2003) call such systemic differentiation “inhomogeneity”; they too consider it a 
hallmark of complexity, as do Carlson & Doyle (2002).  In an important article that 
echoes this general point, the U.S. Naval Academy’s Robert Artigiani demonstrates 
through two military examples that the best way to deal with unpredictable complex 
systems is by organizing the system so it is maximally adaptive – when leadership 
cannot solve the problem in advance because no one knows what the problems will 
be, it is important to build systems that can solve the problem for themselves. 
Microdiversity in the sense of internal differentiation is one way to do just that.    

Allen, who worked extensively with Nobel Laureate Ilya Prigogine in Brussels during 
the earliest years of this science, has also extensively studied how micro-diversity 
within a natural or social system drives the qualitative changes that occur in these 
systems and structures over time.  Allen demonstrates that if a particular variation 
increases an organism’s fitness, natural selection will favor that variation; following 
the landscape metaphor, evolutionary change – i.e., increased adaptation to the 
environment - is tantamount to hill-climbing. 

Allen’s early experiments demonstrated that hill-climbing occurs “as a result of 
processes of ‘diffusion’ in character space.   Using diffusion models, Allen’s research 
also establishes that it is micro-diversity or internal differentiation that confers 
resilience. Further experiments conducted by Allen and his team at Cranfield 
University (UK) subsequently confirmed that successful “evolution will be driven by 
the amount of diversity generation to which it leads. Evolution selects for an 
appropriate capacity to evolve [more exploration and innovation in novel situations; 
less exploration in established conditions], and this will be governed by the balance 
between the costs of experimental ‘failures’… and the improved performance 
capabilities discovered by the exploration.” The conclusion Allen draws from the 
research is that “organizations or individuals that can adapt and transform 
themselves, do so as a result of the generation of micro-diversity and the 
interactions with micro-contextualities” (emphasis added). The system’s complex 
regulatory feedback and dynamics also stop cascading failures and enable the 
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system to survive (Carlson & Doyle 2002). Incorporating narrative research into 
dynamical landscapes is a unique and powerful tool to understand and influence 
social systems.

Understanding how information and influence disseminate throughout a social group 
is a key component that cuts across storylines and issues. To the extent that 
diffusion processes identify a property that is the inverse of robustness (both pertain 
to the way influence or information disseminates through, or is blocked, within 
particular communities by components that are different – by social mavericks, in 
effect), identifying features in a social landscape that promote desirable robustness 
and resilience is a central task of any decision-maker’s mission. 

Fail-Safe versus Safe-Fail
Thinkers in the field of public policy have traditionally counseled what might be 
called a fail-safe strategy. From Plato to Marx, the goal was always to design forms 
of social organization that, because they were ideal, would remain forever in 
equilibrium. The traditional goal of public policy makers, in other words, has been 
stability, the minimization of fluctuations. In stark contrast to this approach, 
ecologist C. S. Holling argues convincingly that if the notion of resilience applies to 
society at all, it counsels instead a safe-fail strategy that assumes from the outset 
that failures will occur despite the best-laid plans. A safe-fail strategy is one “that 
optimizes a cost of failure and even assures that there are periodic ‘minifailures’ to 
prevent evolution of inflexibility” (Holling 1976; Juarrero-Roque 1991). It is clear that 
Allen’s thesis - that evolution evolves to maximize evolvability - is another way of 
making the same point. Social policy should pursue a goal of resilience, not stability. 
As this new science develops, valuable lessons are derived from studying dynamical 
landscapes and the networks described in cluster graphs for the way weak ties, high 
betweenness links, micro-diversity, and other similar features contribute to the 
robustness and resilience of complex adaptive networks. In turn, these insights are 
can inform social organization management.
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